FERRARI, A., BRAIBI VII, A. & TIRIPICCHIO, A. (1966). Acta Cryst. 21, 605.

- HAMILTON, W. C., R ILLETT, J. S. & SPARKS, R. A. (1965). Acta Cryst. 18, 129.
- LIVINGSTONE, S. E. (1965). Quart. Rev. Chem. Soc. Lond. 19, 386.

Acta Cryst. (1970). B26, 1705

The Crystal Structure of Acetohydroxamic Acid Hemihydrate

BY B. H. BRACHER

High Energy Physics Division, Rutherford Laboratory, Chilton, Didcot, Berks., England

AND R.W.H.SMALL

Chemistry Department, University of Lancaster, England

(Received 9 September 1969)

The structure of acetohydroxamic acid hemihydrate, CH_3 .CO.NHOH. $\frac{1}{2}H_2O$, has been determined using three-dimensional X-ray intensities measured with a proportional counter. Atomic positions and anisotropic vibrational parameters have been refined using full-matrix least squares, and a vibrational analysis carried out. The final *R* value is 0.052, the principal interatomic distances (Å) within the molecule are C-C, 1.505 (6); C-O, 1.245 (6); C-N, 1.333 (6); N-O, 1.400 (5).

Introduction		% C	% H	% N
Introduction	Expected for CH ₃ CONHOH	32.0	6.7	18.7
This study of acetohydroxamic acid,	Expected for $CH_3CONHOH_{\frac{1}{2}}H_2O$	28.6	7.1	16.7
CH ₃ .CO.NHOH. ¹ / ₂ H ₂ O,	Found	27.4	7.1	16.9

is part of a series of investigations of the crystal structures of simple amides. The authors' interest lay in comparing the geometries of the amidic and hydroxamic groups, and in a comparison of the hydrogen bonding arrangement with those found in typical amides.

Crystal data were gathered, and the approximate structure determined, at the University of Birmingham. Three-dimensional refinement was started, using Rollett's block-diagonal least-squares program, on the MERCURY computer at the University of Oxford. Refinement was later recommenced and completed by one of the authors (BHB) at the Atomic Energy Research Establishment, Harwell. The second refinement used a full-matrix least-squares program, and the reresults of this second refinement are reported here.

Experimental

Acetohydroxamic acid was prepared by heating equivalent proportions of acetamide and hydroxylamine hydrochloride to 100°C. Ethyl acetate was used as a solvent for extracting and recrystallizing the product. During preliminary crystallographic work, it became evident that the acid obtained in this way is hydrated, and the composition was checked by quantitative analysis with the following results:

Weissenberg photographs showed that the crystal is
orthorhombic. The systematic absences, hol when
(h+l)=2n+1 and $0kl$ when $(k+l)=2n+1$, indicated
the space group to be either Pnnm or Pnn2. A statis-
tical analysis of X-ray intensities in the 0kl zone (Ho-
wells, Phillips & Rogers, 1950) indicated that this zone
is acentric, and the space group is therefore, Pnn2.
The cell dimensions were obtained from a least-squares
fit to 19 interplanar spacings, measured on the three-
circle diffractometer using Cu Ka radiation ($\lambda =$
1.5418 Å). The density was measured by flotation in a
mixture of chlorobenzene and bromobenzene. Crystal
data are given in Table 1.

Table 1. Crystal data

Acetohydroxamic acid hemihydrate C2NO2H5. 2H2O

а	=	8·406±0·002 Å
b	=	12.046 ± 0.004
с	=	4.037 ± 0.001
V	=	408·8±0·02 Å ³
Ζ	_	$4C_2NO_2H_5 + 2H_2O$
D_{obs}	=	1.36 g.cm ⁻³
D_{cale}	=	1.36 g.cm ⁻³

Initially, two-dimensional intensity data were measured, using photographic and counter methods, for the hk0 and 0kl zones. After determination of the ap-

- LUTH, H. & TRUTER, M. R. (1968). J. Chem. Soc. (A), p. 1879. O'CONNELL, A. M. (1969). Acta Cryst. B25, 1273. PAULING, L. (1960). Nature of the Chemical Bond, 3rd Ed.
- Ithaca: Cornell Univ. Press.
- WEININGER, M. S., O'CONNOR, J. E. & AMMA, E. L. (1969). In. Chem. 8, 424.

proximate structure, three-dimensional intensities were measured on the diffractometer described by Small & Travers (1961) using Cu $K\alpha$ radiation. In all, 456 out of a possible 498 intensities were measurable. No attempt was made to correct these data for absorption.

Determination of the structure

The x and y coordinates were obtained by interpretation of a sharpened Patterson synthesis projected onto (001) and trial and error methods were used to determine the z coordinates from 0kl data.

In the non-centrosymmetric space group *Pnn2*, an arbitrary specification of the origin in the z direction is required. In this case, the oxygen atoms of the water molecules, lying in the special positions (0,0,z) and $(\frac{1}{2},\frac{1}{2},\frac{1}{2}+z)$ were given a fixed z coordinate of z=0.

Two-dimensional refinement was carried out by Fourier and least-squares methods, until the discrepancy indices were $R_{hk0}=0.11$ and $R_{0kl}=0.16$. $R=\sum ||F_o|-|F_c||/\sum |F_o|$.

Three-dimensional refinement was carried out using a modified version of the full-matrix least-squares program of Gantzel, Sparks & Trueblood (ACA No. 317), on the IBM 7030 and 360/65 computers at Aldermaston and Harwell. This program minimizes the quantity $\sum w(|F_o| - |F_c|)^2$. Refinement of the positions and anisotropic vibrational parameters of the C, N and O atoms, with all reflexions given equal weight, converged with $R_{hkl} = 0.078$. At this point, the summation of a three-dimensional $(F_o - F_c)$ synthesis gave the positions of the six hydrogen atoms. These were included in the structure model with isotropic temperature parameters based on the vibrational amplitudes of their parent atoms. In the final cycles of refinement, the positions of the hydrogen atoms (but not their vibrational parameters) were refined. The ultimate weighting scheme was

$$w = \{1 + [(|F_o| - 6.0)/8.0]^2\}^{-1}$$

and a final reliability index of $R_{hkl} = 0.052$ was obtained. An $(F_o - F_c)$ synthesis revealed no significant features.

For all refinement calculations, atomic scattering factors as given in *International Tables for X-ray Crystallography* (1962) were used. The final positional and vibrational parameters are shown in Tables 2 and 3 respectively, while the atom labelling scheme is illustrated in Fig. 1. Table 4 shows a list of final observed and calculated structure amplitudes.

Table 2. Fractional atomic coordinates

The estimated standard deviations in parentheses refer to the last decimal positions of respective values.

	x	У	z
C(1)	0.42260 (45)	0.26020 (30)	-0.0202 (18)
C(2)	0.42346 (66)	0.13746 (35)	-0.0809 (23)
N	0.29498 (41)	0.31228 (26)	-0.1311 (18)
O(1)	0.27495 (34)	0.42586 (24)	-0.0801 (18)
O(2)	0.53290 (35)	0.30813 (23)	0.1219 (18)
O(3)	0.0 (0)	0.0 (0)	0.0 (0)
H(1)	0.3258 (82)	0.1027 (48)	-0·208 (19)
H(2)	0.4294 (85)	0.1090 (53)	0.124 (20)
H(3)	0.5301 (82)	0.1122 (49)	-0.180(22)
H(4)	0·2123 (72)	0.2792 (45)	-0·239 (18)
H(5)	0.3345 (80)	0·4420 (54)	-0.207 (19)
H(6)	0.0107 (71)	0.0598 (42)	-0.144 (22)

In order to assess librational corrections to the coordinates of the C, N and O atoms, a vibrational analysis was carried out using the equations given by

Fig. 1. Atom labelling system for acetohydroxamic acid and water. H(6) and H(6') are symmetrically related.

Table 3. Vibrational parameters

The temperature factor expressions used were, for C, N and O atoms, exp $[-10^{-4}(h^2b_{11}+k^2b_{22}+c^2b_{33}+hkb_{12}+hlb_{13}+klb_{23})]$ and for H atoms, exp $(-B \sin^2 \theta/\lambda^2)$. The estimated standard deviations in parentheses refer to the last digit of respective values.

- ·				-		
•	b_{11}	b22	b33	<i>b</i> ₁₂	b_{13}	b23
C(1)	86 (5)	43 (2)	422 (26)	15 (6)	-12(23)	10 (17
C(2)	144 (7)	38 (3)	727 (43)	-13 (7)	-77 (37)	- 29 (21
N	82 (5)	38 (2)	698 (35)	4 (5)	- 94 (23)	19 (16
O(1)	103 (5)	44 (2)	788 (32)	19 (5)	-15(23)	7 (16
O(2)	99 (4)	47 (2)	832 (30)	20 (5)	-230(21)	- 94 (14
O(3)	138 (7)	36 (2)	571 (34)	6 (7)	0 (0)	0 (0)
	В					
H(1)	3.57					
H(2)	3.57					
H(3)	3.57					
H(4)	2.94					
H(5)	3.30				•	
H(6)	3.03					

.

ч к	L	FO	FC	H I	< ۱	FO	۳c	н	×	L	F0	FC	н	ĸ	L	F 0	۴c
000000000000000000000000000000000000000	241302413024130	3242 556 748 586 2466 630 200 2473 505 423 1083 520 1014 880 313	3359 543 756 612 2762 653 188 2558 528 406 1093 532 1025 913 321	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 4 4 5 5 5 5 5 6 6 6 6 6	1504 735 943 109 304 334 304 339 1362 503 3278 4212 1859 1859 1859 1859 1853 3499 3499 3499	1489 675 894 119 310 389 1308 499 248 256 1814 1256 649 490 107		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	012401230123401	641 1476 744 369 373 696 260 584 117 375 404 684 235 428 293	600 1459 700 382 410 649 216 554 82 683 416 638 223 424 273	6666666666666666	4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7	0123012301230127	430 349 186 206 297 408 1041 646 496 496 1041 541 541 541 525	457 782 164 199 369 198 268 406 1019 719 534 392 129 559 586 326
6 6 7 6 7 7 8 8 9 9 11 11 12 12	241302413021302	671 392 3221 678 1114 700 643 929 113 760 481 649 638 439 561	684 400 3310 686 1145 692 657 919 97 97 707 479 676 584 507 567	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	777788888999999	n 704 1 1059 2 681 3 369 4 231 0 1754 1 557 2 1781 3 261 4 272 0 567 1 343 2 494 4 3388 4 164	686 1022 663 385 219 1752 577 1755 282 256 570 344 491 338 182	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	66677778888999990	2340123012301230	555 470 223 1849 980 458 195 1172 258 260 209 1905 633 740 229 970	534 466 153 1781 966 496 140 180 281 245 190 1968 637 706 211 983		8 8 9 9 9 10 10 10 10 11 11 11 12 0	130120120121	3,57 258 165 120 273 613 729 495 316 374 255 142 214 2050	349 267 136 161 257 641 725 491 313 330 262 133 324 2079
0 13 0 14 0 14 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2	10213501234012	254 281 308 3950 520 177 2042 3963 820 867 102 2394 3780 1514	265 263 294 4147 935 227 1942 4277 815 864 153 2612 3993 1528	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0 1841 1 441 2 735 3 305 1 586 1 586 1 586 2 282 3 307 0 259 1 290 1 290 1 485 2 127 1 311	175 451 731 318 480 590 266 319 220 300 300 211 479 76 265	- 4 4 4 4 4 4 4 4 4 5	10 10 10 11 11 12 12 13 14	123012010	638 264 167 361 142 120 313 261 340 135 309 223	635 286 41 332 133 115 285 287 311 155 270 222 344	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 ! 1] 1 2 2 2 3 3 3 7 4 4 4	301230120123123	692 220 763 299 91 512 321 348 398 308 197 193 276 675 394	685 194 766 312 122 457 309 327 382 341 278 192 259 677 362
	3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 1 2 3 3 4 1 2 3 4 1 2 3 3 4 1 2 3 3 4 1 2 3 3 1 2 3 1 2 3 2 3 3 1 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 2 3 1 2 1 2	414 146 130 1358 1521 402 334 748 1184 663 95 230 3533 897 1017 333	406 191 85 1332 1495 402 334 730 1145 668 150 217 3952 875 939 319	333333333333333	001111122222333	1 2785 3 709 0 342 1 143 3 859 4 201 0 4289 1 1841 2 1245 3 312 4 430 0 556 1 1349 2 1379	2682 698 185 127 1009 832 223 4241 1840 1270 318 439 516 314 1302 1302	5 5 5 5 7 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5	01111222233333	3012340123401234	989 2431 1067 922 815 166 305 344 628 428 428 118 941 588 522 266 479	997 2 341 1074 892 780 183 275 319 599 457 144 909 593 494 286 412	, , , , , , , , , , , , , , , , , , , ,	5556666777788990	1230123012301017	245 242 109 383 122 297 242 803 203 203 203 278 330 380 323	192 255 129 389 155 333 186 1077 382 772 213 281 330 348 323
	0 1 2 3 4 0 1 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 1 2 3 4 0 1 1 2 3 4 0 1 1 2 3 4 0 1 1 2 3 4 0 1 1 2 3 4 0 1 1 2 3 4 0 1 1 2 3 4 0 1 1 2 3 4 0 1 1 2 3 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2025 658 1132 793 168 1444 570 243 407 314 958 858 858 858 595 557 110	1996 671 1095 800 162 1469 575 223 401 321 909 833 558 535 125	333333333333333	3 4 4 4 4 5 5 5 5 5 6 6 6 6	4 80 0 517 1 544 2 633 3 287 4 300 6 1562 1 962 2 1073 3 481 0 491 1 490 1 490 1 491 1 490 2 324 3 211	136 525 517 643 256 332 1617 571 1030 462 156 512 404 353 7 254	១៩១៩ នេះ គេទុក្ខភាពភាគភា	4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 7	0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0	140.1 752 372 441 110 881 566 209 207 134 117 128 662 245 161 238	1364 315 429 903 582 191 205 165 145 705 222 175 184	,7777 888888888888888888888888888888888	10 11 11 11 11 11 12 22 23		194 105 278 186 507 347 1408 212 821 596 497 161 328	200 113 229 214 513 320 1436 394 141 823 547 510 174 298
		284 880 404 468 253 1027 657 967 967 232 225 106 232 225 106 322	277 847 403 255 1074 676 779 665 1040 503 240 238 24 250 308		6777788889999010	a 290 637 1 1204 2 786 3 132 4 124 1 1056 2 265 3 466 4 116 0 72 1 1816 2 335 3 456 0 921 4 124 1 1056 1 1204 1 1205 1 1205 1 1204 1 1205 1 1204 1 1205 1 120	236 589 1267 759 150 150 150 1059 228 484 5117 122 1825 3367 486 3922 487		778888999901001011111	1 2 3 0 1 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1	729 368 524 1583 423 392 386 504 105 116 397 446 229 635 403	734 395 524 1577 445 399 321 463 169 161 425 402 261 675 410	5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	34455666777890 0	31312012012100	99 333 242 632 123 145 559 242 283 201 168 301 448 242	129 339 308 664 227 39 608 248 302 160 168 310 440 219
	2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3	135 450 133 270 1684 2568 308 3080 3929 1823 950 312 1411	66 398 56 265 1551 2593 327 3224 3889 1847 913 306 1368	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10 10 10 11 11 11 11 12 12 12 14 14	1 51 2 38 3 214 0 21' 1 14' 2 48 3 12 0 23 1 35 2 21 0 53 1 26 0 3366 2 40	5 396 5 396 8 247 7 188 7 178 4 472 5 98 4 223 3 232 1 510 7 241 3 3350 1 437	5555 66666666		20 1 20 0 2 4 0 1 2 5 4 0	153 352 202 268 151 1056 238 370 498 1176 236 93 523	182 353 198 265 141 726 283 404 508 1203 265 109 527	*************	0111222334455667	1012012120102011	186 526 738 356 230 132 132 401 330 689 214 135 85 707 244	227 556 759 364 247 116 178 402 287 669 217 95 672 245
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		807 745 103 282 576 2330 307 656 271	802 739 136 275 535 2304 332 713 272	• • • • • • • • • •	0 1 1 1 2 2 2 2 2 2 2	4 29 0 114 1 75 2 67 3 46 4 53 0 70 1 221 2 119 3 52 4 33	273 1059 7155 6355 486 573 0692 32163 4185 521 5352	****	222222222222222222222222222222222222222	1 2 3 4 0 1 2 3 4	963 771 472 315 742 767 185 208 179	932 725 462 343 717 723 161 170 143	10 10 10 10 10 10 10	80112334	.0 00110101	135 314 414 148 433 528 247 160 336	187 302 408 130 376 491 239 147 310

Table 5. Principal axes of thermal ellipsoids

 U_i is the root-mean-square displacement of the *i*th principal axis of the ellipsoid. c_{ia} , c_{ib} , c_{ic} are the direction cosines, multiplied by 104, of the angles between the *i*th axis and the crystallographic axes.

		Ui	Cia	Cib	Cic
C(1)	1	0.188	4148	6367	6500
	2	0.187	- 5570	-3872	7348
	3	0.164	7195	- 6668	1940
C(2)	1	0.252	- 4669	- 0457	8831
	2	0.221	8674	-2180	4473
	3	0.165	1721	9749	1414
N	1	0.245	- 2529	0630	9654
	2	0.170	6335	7650	1160
	3	0.161	7313	- 6409	2333
O(1)	1	0.255	- 417	190	9989
	2	0.200	8423	5384	250
	3	0.171	- 5373	8425	- 384
O(2)	1 .	0.285	-4071	-2614	8752
	2	0.177	-1614	9637	2128
	3	0.162	8990	547	4345
O(3)	1	0.222	9977	685	0
	2	0.217	0	0	10000
	3	0.163	-685	9976	0
					-

Cruickshank (1956, 1961). It was assumed that the molecule is a rigid body librating about its centre of mass. The program of Gantzel, Coulter & Trueblood (ACA No. 232), modified to give librational corrections, was used for this purpose. Table 5 shows the principle axes of vibration, and Table 6, the rigid-body tensors T and ω .

Table 6. Rigid-body translational and librational tensors

Elements T_{ij} of the mean-square translational tensor, and those, ω_{ij} of the librational tensor, are expressed in Å² and radians² respectively. All values have been multiplied by 104. Estimated standard deviations, referring to the last digit of respective values, are in parentheses.

T_{11}	277 (25)	ω_{11}	73 (18)
T_{22}	272 (21)	ω_{22}	231 (36)
T ₃₃	371 (37)	ω_{33}	49 (12)
T_{12}	-4 (21)	ω_{12}	-44(21)
T_{13}	-8 (28)	ω_{13}	7 (12)
T_{23}	-6 (24)	ω_{23}	1 (23)

The molecular arrangement

The molecular arrangement of acetohydroxamic acid, projected onto (001), is illustrated in Fig. 2. In this diagram, molecules labelled A and B are roughly at z=0, while those labelled C and D are at $z=\frac{1}{2}$.

There are three types of hydrogen bond in the structure. The first type connects the O(2) and N atoms of molecules A and C respectively: the relevant interatomic distances are $O \cdots N$, 2.80; $O \cdots H$, 1.91; N-H, 0.90 Å, giving an O-H-N angle of 169.8°. This first type of hydrogen bond links molecules into chains, parallel to (101) for molecules A and C, and to (101) for B and D. The closest non-bonding approach in each chain is 2.69 Å, between H(3a) and H(4c). The angle between the (101) plane and the plane through molecule A is 8.7° .

The other two types of hydrogen bond connect each water molecule to four acid molecules, giving roughly a tetrahedral arrangement of hydrogen bonds round each O(3). The O(1)H(5) groups of molecules A and C form hydrogen bonds with the water oxygen at position $(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$. Relevant distances are: O···O, 2.69; O···H, 1.95 and O-H, 0.75 Å. The O-H-O angle is 169.2°. The third type of hydrogen bond connects the water oxygen atom at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ with atoms O(2c) and O(2d), using the water hydrogen atoms. The interatomic distances are: O···O, 2.78; O···H, 1.86; O-H, 0.93 Å, giving an O-H-O angle of 169.6°.

Fig.2. The crystal structure projected onto (001). Molecules A and B are at height z=0; C and D are at $z=\frac{1}{2}$. Large and small open circles represent O and H atoms respectively. Circles containing dots and rings represent C and N atoms respectively. Hydrogen bonds are shown by dotted lines.

The hydrogen atoms of the water molecule at $(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$ are 2.30 and 2.69 Å away from atom H(5*a*), while the distances between atom O(1*a*) and the hydrogens of the water molecule at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ are 2.66 and 2.99 Å.

The molecule

Bond lengths and angles, corrected for libration, are given in Table 7.

Table 7. Bond lengths and bond angles

The figures in parenthesis are estimated standard deviations referred to the last place of decimals.

(a) Bond lengths (Å) before librational corrections.

C(1) - C(2)	1.498 (6)
C(1) - N	1.321 (6)
C(1) - O(2)	1.234 (6)
N - O(1)	1.393 (5)
~ /	

(b) Bond lengths (Å) after librational corrections.

C(1) - C(2)	1.505 (6)	C(2) - H(1)	1.05 (7)	
C(1)-N	1.333 (6)	C(2) - H(2)	0.89 (8)	
C(1) - O(2)	1.245 (6)	C(2) - H(3)	1.02 (8)	
NO(1)	1.400 (5)	NH(4)	0.90 (7)	
		O(1) - H(5)	0.75 (8)	
O(3)-H(1)	0.93 (7)			

(c) Bond angles (°) before librational corrections.

C(2) - C(1) - N	114.6 (4
C(2) - C(1) - O(2)	122.3 (4)
N - C(1) - O(2)	123.1 (4)
C(1) - N - O(1)	120.9 (4)
• • • • • •	

(d) Bond angles (°) after librational corrections.

C(2)-C(1)-N	114.3(4)
C(2)-C(1)-O(2)	122.4(4)
N - C(1) - O(2)	123.3(4)
C(1)-N-O(1)	120.6 (4)
C(1)-C(2)-H(1)	118 (3)
C(1) - C(2) - H(2)	102 (5)
C(1) - C(2) - H(3)	111 (4)
H(1)-C(2)-H(2)	110 (7)
H(2)-C(2)-H(3)	102 (7)
H(1)-C(2)-H(3)	112 (6)

Acta Cryst. (1970). B26, 1709

Die Kristall- und Molekülstruktur von [Co₃(NH₃)₈(OH)₂(NO₂)₂(CN)₂](Cl0₄)₃.NaCl0₄.2H₂O

VON J. WEISS, H. SIEBERT AND K. WIEGHARDT

Anorganisch-Chemisches Institut der Universität Heidelberg, Deutschland

(Eingegangen am 20. August 1969)

The structure of $[Co_3(NH_3)_8(OH)_2(NO_2)_2(CN)_2]$ (ClO₄)₃. NaClO₄. 2H₂O has been determined by X-ray methods. The compound crystallizes in the monoclinic space group A2 (C_2^3) with $a=14\cdot11$, $b=7\cdot86$, $c=14\cdot84$ Å, $\beta=112\cdot3^\circ$, Z=2. The cation is of symmetry C_2 . At the central Co atom there are two CN⁻ ligands in the *cis* position. This Co atom is linked to the two Co(NH₃)₄ groups by one OH and one NO₂ bridge each. The N atoms of the two NO₂ bridges are coordinated to the central Co atom *trans* to each other, while the O atoms of the OH bridges are in the *cis* position.

Einleitung

Kürzlich wurden Darstellung und Eigenschaften von cyanidhaltigen dreikernigen Kobalt(III)-amminen be-

	Table 7 (cont.)
C(1)-N-H(4)	125 (4)
O(1)-NH(4)	114 (3)
N O(1) - H(5)	94 (5)
Water H-O-H	103 (7)

Atoms C(1), C(2), N and O(2) are coplanar within the limits of experimental error, atom O(1) lying 0.056 Å from this plane. The equation of the plane is given in Table 8.

Table 8. Deviations from molecular plane

Deviations of the atoms from the plane through C(1), C(2), N and O(2) are given in Å. The equation of the plane, referred to axes a, b, c, is -0.4528x - 0.1480y + 0.8793z + 2.1444 = 0.

C(1)	0.0006
C(2)	-0.0002
N	- 0.0002
O(1)	0.026
O(2)	-0.0002

A full discussion of the significance of these interatomic distances in relation to those observed in other simple derivatives of acetamide will be given later, elsewhere.

The authors wish to thank Dr J. S. Rollett, of the University of Oxford, for his advice in the early stages of the work, and Dr B. T. M. Willis, of the U.K.A.E.A., for encouraging its completion.

References

CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 747, 754. CRUICKSHANK, D. W. J. (1961). Acta Cryst. 14, 896.

Howells, E. R., Phillips, D. C. & Rogers, D. (1950). Acta Cryst. 3, 210.

International Tables for X-ray Crystallography (1962). Vol. III, 202. Birmingham: Kynoch Press.

SMALL, R. W. H. & TRAVERS, S. (1961). J. Sci. Instrum. 38, 205.

schrieben (Siebert & Schiedermaier, 1968), welche u.a. das Kation $[Co_3(NH_3)_8(OH)_2(NO_2)_2(CN)_2]^{3+}$ enthalten. Aufgrund der chemischen Reaktionen und der Ultrarotspektren konnte nur festgestellt werden, dass das